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Abstract—In 2014, as part of the NASA Operation IceBridge 
project, the Center for Remote Sensing of Ice Sheets operated a 
multi-beam synthetic aperture radar depth sounder/imager over 
the Canadian Arctic Archipelago to generate digital elevation 
models (DEMs) of the glacial-basal topography. In this work, we 
briefly describe the processing steps that led to the generation of 
these DEMs, algorithm improvements over previously published 
results, and assess the results from two different perspectives. 
First, we evaluate the self-consistency of the DEMs where flight 
paths cross over each other and two measurements are made at 
the same location. Secondly, we compare the quality of the outputs 
of the ice-bottom tracker before and after applying manual 
corrections to the tracker results; the tracker is an algorithm that 
we implemented to automatically track the ice-bottom. 

Keywords— Synthetic aperture radar imaging, SAR, ice, ice-
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I. INTRODUCTION  
The Canadian Arctic Archipelago (CAA) contains one-third 

of the global volume of land ice outside the ice sheets, but its 
contribution to sea-level change is largely unknown. A recent 
mass balance estimate indicated a loss of 61 ± 7  (Gt/yr) of ice, 
contributing 0.17 ± 0.02 mm/yr to sea-level rise [1].  The present 
work is to generate DEMs of the ice bottom to improve estimates 
of the present sea-level contribution from the CAA ice-caps and 
to supply boundary conditions to ice dynamics models that will 
enable understanding of the basal controls on the glaciers in 
order to predict future contributions to sea-level [2]. 

In this work, an airborne Multichannel Coherent Radar Depth 
Sounder (MCoRDS), which was developed at the University of 
Kansas [3], was used to collect data from the Canadian Arctic 
Archipelago (CAA) as part of the NASA Operation IceBridge 
2014 arctic campaign. The radar was equipped with a 15 sensor 
linear array in the cross-track, where the center 7 sensors were 
used for transmit and all 15 sensors each received and recorded 
an independent channel of data. Here, we only used the data 
from the center 7 sensors, which are mounted on the fuselage. 
The radar was operated in a time multiplexed multi-beam mode, 
where the first beam looked left (−30∘) of nadir, then at nadir, 
and then right (30∘) of nadir as shown in Fig. 1a. With a transmit 
Hanning window, most of the energy is contained in a 30∘ 
beamwidth. The transmitted up-chirp was centered on 195 MHz, 

had a 30 MHz bandwidth, and a pulse duration of 3 𝜇𝜇𝜇𝜇. The 
corresponding range-resolution is about 5 m in ice. The azimuth 
SAR resolution is 2.5m. At a 1000m AGL flight altitude, the 
SAR aperture is about 480m for a surface target. The pulse 
repetition frequency (PRF) is 12 KHz with 13 presums for each 
beam for an effective recorded PRF of 307 Hz. 

Three main radar processing steps were applied to form a 3D 
image of the scene. These are: pulse compression, synthetic 
aperture radar (SAR) processing, and array processing. These 
steps are detailed in Section 2.1. The results from these 
processing steps then go into an automatic layer tracker, which 
is an algorithm that automatically tracks the bottom (i.e. the bed) 
of the ice caps. This tracked layer, along with other inputs, were 
used to generate the digital elevation models (DEMs) of the ice-
bottom. These are detailed in Section 2.2. In Section 3 we self-
assess the generated DEMs by doing a crossover analysis, where 
the DEMs from crossing flight paths are compared.  Also, we 
quantify the quality of the automated tracker by comparing the 
tracked layer before and after applying manual corrections by 
trained analysts. These results are discussed in Section 3, before 
we conclude our work in Section 4. 

In this work, our main contributions are: 1) generated the 
DEMs for all the data segments from the CAA (102 DEMs from 
5 segments), where we previously only had generated 7 DEMs 
and published the work in a separate paper, 2) performed 
crossover analysis, and 3) modified the ice-layer tracker to better 
track the ice-surface and bottom and analyzed the new results. 

II. ALGORITHM DESCRIPTION  

A. Radar Processing and 3D Image Formation 
Synthetic aperture radar (SAR) images are 2D images of the 

scene, where one axis represents the slow-time dimension (i.e. 
along-track) and the other axis represents the fast-time 
dimension (i.e. range-time). Pulse compression is used to 
resolve the targets in the range dimension by matched-filtering 
the received echoes (after being pre-conditioned). Then the data 
are focused in the along-track dimension using the frequency-
wavenumber (f-k) migration algorithm. Each pixel in the SAR 
image contains direction of arrival (DoA) information from all 
targets at a specific along-track location (i.e. range-line) and a 
specific range-time (i.e. range bin). After these two steps we can 



 
 
 

view the scene as a thin sheet in the cross-track dimension, with 
a handful of unresolvable targets that lie in a constant range-time 
toroid around the radar, as shown in Fig. 1b. These targets can 
be resolved by estimating their DoAs using array-processing 
techniques, which is the third step in the 3D image formation 
process. Some other conditioning steps are also applied during 
these steps, such as motion compensation and receiver 
equalization. 

In this work, the MUltiple Signal Classification (MUSIC) 
technique was used to estimate the directions of the echoes 
impinging on the array-antenna of the airborne radar [4]. We 
used MUSIC as a beamformer rather than an estimator (i.e. scan 
over DoAs from −90∘  to 90∘) because the latter requires the 
exact number of sources or model number to be known 
(otherwise the tracker may track false targets or miss targets all 
together). Current efforts to estimate the model number using 
standard eigen-analysis of the data covariance matrices have 
failed due to a complicated eigenstructure that may be due to the 
time-bandwidth product of the array and multipath effects. The 
model number or assumed number of sources is two for each 
beam. In other words, the signal eigen-space for each beam is 
assumed to have a dimension of two. The output of the 
beamformer is a 3D image where the dimensions are along-
track, range, and direction of arrival. The beamformer has the 
advantage that even when the signal eigen-space is not precisely 
estimated, there is still likely to be some reduction in the 
correlation between the actual source’s steering vector and the 
null space of the signal eigen-space which can aid the ice bottom 
tracker even though it is not the steering vector with the lowest 
correlation due to errors in the signal eigen-space estimation. (In 
the absence of other information, the steering vector leading to 
the lowest correlation is usually taken to be the most likely DoA 
for the source.) 

B. Layer-Tracking Algorithm and DEM generation 
Since manual tracking of the ice-bottom is impractical on a 

large scale, we have implemented an automated technique for 
extracting the ice-layer surfaces (e.g. ice-bed) as well as a 
browser to visualize the 3D images [5,7]. The word ‘layer’ here 
refers to the ice-surface or ice-bottom. 

There are four main inputs to the layer-tracker (see Fig. 2):  

1. The processed radar data is the 3D image where the 
ice-surface and ice-bottom need to be tracked. 

2. The ice-mask [6] is a binary raster that is used to 
determine at each DoA whether there is ice or not. This 
is useful to force the automatic layer-tracker to alter 
the cost calculation accordingly and forces the ice-
surface and ice-bottom to merge where there is no ice.  

3. For each angle of incidence in the 3D image, the a 
priori surface DEM from ArcticDEM is used to find 
an estimate of the range-time to the ice-surface. Aside 
from providing the surface location, it is used to 1) 
extract image intensity properties of the surface 
scattering that are used to track the unknown ice-
bottom and 2) to perform a rough calibration of the 
radar steering vectors by adjusting the radar-estimated 
DoA to match the surface-DEM-derived DoA. The 
averaged adjustment is then applied to the ice bottom 
for which there is no a priori information. 

4. Ground truth points indicate where the ice-bottom 
layer should pass through. These are human labeled 
and only available for the nadir direction. The tracker 
does not assume these points are perfect, but the cost 
function is lower for layers that pass through them.  

 
The tracker [7] was modified in several ways to improve its 

performance. The tracker optimization is based on a message 
passing algorithm in which each pixel in the image passes a 
“cost” message to its neighboring pixels to the left and right 
(direction of arrival dimension) and forward and backward 
(along-track dimension) in every iteration loop. In [7], although 
messages are passed in all directions, in each of the two 
dimensions there is a preferential direction where the current 
iteration message is propagated while in the opposite direction 
the previous iteration message was propagated. This causes a 
strong bias towards the side of the image that the preferential 
direction starts from. For example, when the preferential 
direction is left to right, the left-most side of the image had a 
stronger effect on the result than all other columns because its 
message would be passed all the way across the image in a 
single iteration. [7] dealt with this by propagating messages 
from the left to right and then right to left and from up to down 
and then down to up in each loop. The issue with this solution 
was that the most extreme directions of arrival (far-left and far-
right), where the signal quality is worst, were being given the 
most influence. Since we have ground truth at nadir and the 
signal quality is often best at nadir, the preference direction was 
changed to be outward from nadir. So on the left side of the 
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Fig. 1. a. Transmit configuration. b. SAR resolution. 

 
Fig 2. Input/output of the ice-layer tracker. 

 



 
 
 

image, the preferential direction is toward the left and on the 
right side of the image, the preferential direction is toward the 
right. In this way, the nadir column asserts the greatest 
influence. 

The cost message includes two components, a unary cost for 
each pixel that is independent of the layer and a binary cost 
which depends on how the layer changes from pixel to pixel. 
The unary term includes several components that we modified 
to improve the tracking. The first term is the template energy 
which was set by the mean squared difference between a 
template peak waveform and the image intensity surrounding 
the pixel in question. A single template was used on all pixels 
and was not scaled with the pixel intensity: a peak waveform 
that exactly matches the template intensity scores the lowest 
cost of zero while a peak waveform with a larger peak value 
than the template (and presumably higher quality) would score 
a higher cost because the mean squared difference is used. 
Instead of using the mean squared difference, we now use the 
negative of the correlation between the template and the 
waveform around the image pixel to set the cost. 

Another term in the unary cost is the bottom location or bin 
in the nadir direction which is a priori information available at 
each along-track position. In [7] this was constructed to ensure 
the ice bottom layer passed beneath this bottom bin. The bottom 
bin cost was modified to force the ice bottom layer to pass 
within a 20-pixel neighborhood of the bottom bin rather than 
strictly beneath. This improved results when the bottom bin was 
too low due to errors in the human labeling of the nadir bottom 
bin. Although the bottom bin tends to be fairly accurate, the 
previous tracker implementation would allow the bottom layer 
to pass far beneath the bottom bin with no cost penalty. 

The final term that was modified is a surface repulsion term 
that increases the ice bottom layer cost if it approaches the ice 
surface. This was necessary because the layer tracker has no 
other way to choose one or the other layer to track and, 
furthermore, the ice surface is generally stronger and more 
consistent. Combined in this term, but not fully described in [7], 
was an ice mask term that overrode this term when there was 
no ice present. In this case the ice bottom tracker was supposed 
to be equal to the ice surface to indicate zero ice thickness. The 
issue is that at the boundaries between ice and no-ice, the ice 
bottom often gradually separates from the ice surface. To 
accommodate this, the surface repulsion term was modified to 
gradually increase away from no ice edges and another term 
was added to attract the layers together as they approach a no 
ice region. This modification helped remove artificial 
discontinuities at the no-ice/ice transitions. 

The binary term is used to control the smoothness of the 
surface. This allows the tracker to work through low quality 
regions where several pixel choices might be equally weighted 
based on image intensity only. The binary cost increases the 
likelihood that the pixel that produces the smoothest surface 
overall will be the lowest cost. In [7], the smoothing was set to 
produce a constant range layer in the cylindrical coordinate 
system of the image. The problem is that a constant range layer 
in the cylindrical coordinate system is a tube in Cartesian space. 
The smoothing term was modified to set to lowest cost an ice 

bottom layer with the same range-slope as the ice surface. 
Although this is still not a flat surface, it is generally flatter and 
more realistic than the tube and was simpler computationally 
than calculating a flat ice bottom in Cartesian space which must 
account for ice refraction from a non-flat ice surface layer. 

After the layer tracker is run, the layers are visualized by 
viewing the layer overlaid on the radar image in three 
dimensions along with a corresponding satellite image map and 
ice mask that shows the flight track and image pixel locations. 
Where needed, the bottom layer is manually corrected by 
adding additional ground truth points to the 3D image and 
corrections are made to the ice mask. The tracker is then rerun 
in small neighborhoods with this new information to correct 
issues. Poor data quality areas are also tagged so that they are 
not included in the final output. 

III. RESULTS AND DISCUSSION  
In this section, we assess our results from two perspectives. 

First, we self-assess our results by generating the DEMs of the 
overlapped areas from the crossing tracks (crossovers), and 
second, we present and discuss several statistics of the error 
between the output of the automatic layer-tracker before and 
after manual correction (MC). By MC we mean the manual 
correction by adding more ground truth, fixing the ice mask, and 
the quality labeling step (see subsection 3.2). 

A. DEM Crossovers 
The MC layers are used for all the results in this section; most 

importantly this includes the manual corrections. We have a 
total of 20 crossovers, but due to space limitations we have only 
illustrated six. Fig. 3 shows six crossover examples over ice 
which are representative of the types of error patterns seen in the 
20 crossovers. Each example has six subplots, which are (from 
upper-left to lower-right) the DEM from the crossing flight of 
the first frame, the DEM from the crossing flight of the second 
frame, the absolute difference between these DEMS, a sample 
slice from the first DEM, a sample slice from the second DEM, 
and the cumulative distribution function (CDF) of the absolute 
value of the DEM differences. The difference between the 
DEMs is the crossover error since, from a self consistency 
standpoint, the two DEMs would ideally be the same and the 
difference would be zero. Here a slice from the 3D image is the 
cross-track image at a particular range line, i.e. a 2D cross 
section from the 3D image. The flight line for each DEM is 
shown in black and the location of the 3D slice at the intersection 
of the flight lines is shown in two colors: the left DoA portion is 
indicated in white and the right portion in red. In the slice view, 
the same colors (white and red) where used to indicate the left 
and right portions of the slice. Table 1 shows the statistics of the 
overlapped DEM errors for each crossover in Fig. 3. Over all 20 
crossovers, the mean absolute error is 16 m, the median absolute 
error is 11 m, and the root mean square-error (RMSE) is 23±4 
m. If we assume Gaussian statistics for the errors in each of the 
individual DEMs, then the RMSE for the crossovers that is 
shown here should be √2 larger than RMSE of the individual 
images. Fig. 4 shows the change of the average RMSE over all 
20 crossovers as the largest errors are removed. This plot shows 
that the lower 70% of the errors have an RMSE of 10m. Table 2 
gives the same results as in Table 1, but with the largest 10% of 



 
 
 

errors removed. The resultant reduction in error statistics is 
larger than would be expected for Gaussian distributed errors. 
These results tell us that there is usually a good match between 
the overlapped DEMs, but there are a few large errors that are 
causing the mean statistics to be large (i.e. a heavy tail 
distribution due to outliers). From examining Fig. 3d, if the 
tracker fails to track the correct surface, a whole region may 
have a very large error and create a heavy tail distribution. 

The DEM errors can result from several causes. We divide 
these into a few categories: 1) Poor data quality, due to 
shadowing and weak backscatter. Different flight paths and 
improved instrument parameters may improve this category, but 
these causes cannot be changed in post processing. For example, 
in Fig. 3d, there seems to be no bottom signal in the right-most 
angular bins of the 3D slice example of frame 21. In this case, 
the ice-bottom layer is likely wrong since there is no or very little 
signal to track. 2) Errors due to suboptimal array processing. 
The MUSIC method is known to be suboptimal to MLE [8] and 
we assume a fixed model order of 2 even though the scene in 
general may have more or less than 2 scattering sources. The 
beam former was setup to scan through 64 DoA bins with 
uniform sampling in wavenumber. This DoA sample spacing 
limits the accuracy of the DoA resolution. 3) Tracking errors. 
The tracking algorithm nominally follows the path with the 

largest peak correction in each DoA bin (slice column). 
Parametric DoA estimation approaches usually search for the 
DoA with the largest results in each range bin (slice row). The 
tracker also does not perform an exhaustive search of all paths 
since this is an np-hard problem and therefore the ice-bottom 
result may not be the best regardless of other deficiencies.  

B. Layer-Tracking Assessment 
Here we assess the ice-bottom tracking results by looking at 

statistics of the error (measured in range-bins) between the MC 
output, which has been manually corrected, and the result with 
no MC (NMC) which is the direct output from the automatic 
layer-tracker. Results are averaged over all 102 frames in this 
CAA dataset and each frame contains approximately 3332 
slices. The reference layer is the MC ice-bottom layer. Thus, 
when the error is positive it represents the number of range-bins 
the NMC tracking result is above the MC tracking result. 

Table 3 shows the mean, median, and RMSE of the absolute 
error. Based on our previous published results, the old algorithm 
had a mean error of 11.9 range bins over seven test frames 
whereas the new algorithm has a mean error of 2.3 range bins 
over the same test frames. Fig. 5 shows the cumulative 
distribution function of these errors. We see that ~60% of the 
errors are 0 (i.e. identical), 87% of the errors are within 5 range-
bins from the MC results, and ~96 % of the errors are within 25 
range-bins from the MC results. These errors arise from 
different factors related to the error types mentioned in Section 
3.1. From a qualitative inspection, the largest errors occur when 
the wrong layer is tracked which often means a few well-placed 
ground truth points allow the algorithm to track the correct layer. 

These results show a good tracking capability, but with 
limitations where data quality is poor. In some cases, the MC 
result will also have errors, even for a trained analyst, especially 

Table 1: Statistics from the error of the overlapped DEMS. 
Fig 3. a b c d E f 
Mean 
Error 

21 23 26 89 8 15 

Median 
Error 

13 12 18 38 6 12 

RMSE 30 40 39 142 11 19 
Table 2: Statistics from the error of the overlapped DEMS when 

the largest 10% of the errors were removed. 
Fig 3. a b c d e F 
Mean 
Error 

15 14 19 60 6 12 

Median 
Error 

11 11 16 32 5 10 

RMSE 20 18 23 92 8 15 
 

 
Fig. 5. Cumulative distribution function of the distance, measured 
in range-bins, between the manually corrected and non-manually 
corrected outputs of the layer-tracker. 

0 5 10 15 20 25

|Error|(range-bins)

0

0.2

0.4

0.6

0.8

1

F(
|E

rro
r|)

cdf(|Error|)

 
Fig. 4. Change of the average RMSE as we remove a percentage of 

the largest errors. 
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Average 
mean error 

Average 
median error 

Average 
 RMSE 

4.7 1.2 13.6 
 



 
 
 

in the places where the data quality is low or the SNR of the 
targets is low (i.e. weak target echoes).  

CONCLUSION 

An automatic ice-layer tracker was implemented to track the 
ice-surface and ice-bottom based on the 3D images formed from 
the collected data, the ice-mask, the surface DEMs, and the 
human-labeled ground-truth. The DEMs of the basal topography 
of the Canadian Arctic Archipelago were then extracted using 
the tracked ice-bottom. Finally, these results were evaluated by 
determining the error statistics from the overlapping DEMs, and 
by comparing the tracked ice-bottom to the manually corrected 
one. We found that there is a good match between these 
overlapping DEMs, where, the mean error of the crossover 
DEMs is 23±4 m, while the average error of the automatically 
tracked ice-layers, relative to the manually corrected tracked 
layers, is 13.6 range-bins, with 4.7 range-bins average absolute 
mean error. 
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Fig. 3. Crossover DEM examples. a) Shows the ice bottom DEM results for data frame IDs 20140401_03_007 and 20140401_03_033. The ice 
surface, volume, and ice bottom are indicated in the 3D image slice which is the cross section through the 3D image at the range line 
corresponding to the intersection of the two flightlines. The red crosses indicate targets on the right and white crosses indicate targets on the left 
and nadir is direction of arrival bin 33. The black lines on the map indicate the crossing flight lines. a)-f) For each pair of data frames, there are 
six plots. In the top row, from left to right, are the DEM from the first crossing line with the data frame ID indicated in the title, the DEM from 
the second crossing line, and the magnitude of the difference (error) between the two DEMs. In the bottom row, from left to right, are the single 
slice from the 3D image from the first crossing line at the intersection, the slice at the intersection from the second crossing line, and the 
cumulative distribution of the error magnitude. 
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